vorticity source - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

vorticity source - traduction vers russe

Vorticity Equation; Vorticity transport equation

vorticity source      

общая лексика

источник вихреобразования

vortex motion         
PSEUDOVECTOR FIELD IN CONTINUUM MECHANICS
Vorticity-free; Vortex line; Vortex-line; Vortex-tube; Vortex dynamics; Vortex motion; Vortex flux; Absolute vorticity; Relative vorticity; Vortex lines; Rotationality
[физ.] вихревое движение
source program         
  •  url-status = dead}}</ref><!-- See http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf for original.-->
COLLECTION OF COMPUTER INSTRUCTIONS WRITTEN USING SOME HUMAN-READABLE COMPUTER LANGUAGE
Sourcecode; Source-code; Source file; Source program; Source tree; Yuanma; Source form; Source files
исходная программа

Définition

Vortex line
·add. ·- A line, within a rotating fluid, whose tangent at every point is the instantaneous axis of rotation as that point of the fluid.

Wikipédia

Vorticity equation

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:

where D/Dt is the material derivative operator, u is the flow velocity, ρ is the local fluid density, p is the local pressure, τ is the viscous stress tensor and B represents the sum of the external body forces. The first source term on the right hand side represents vortex stretching.

The equation is valid in the absence of any concentrated torques and line forces for a compressible, Newtonian fluid. In the case of incompressible flow (i.e., low Mach number) and isotropic fluids, with conservative body forces, the equation simplifies to the vorticity transport equation:

D ω D t = ( ω ) u + ν 2 ω {\displaystyle {\frac {D{\boldsymbol {\omega }}}{Dt}}=\left({\boldsymbol {\omega }}\cdot \nabla \right)\mathbf {u} +\nu \nabla ^{2}{\boldsymbol {\omega }}}

where ν is the kinematic viscosity and 2 {\displaystyle \nabla ^{2}} is the Laplace operator. Under the further assumption of two-dimensional flow, the equation simplifies to:

D ω D t = ν 2 ω {\displaystyle {\frac {D{\boldsymbol {\omega }}}{Dt}}=\nu \nabla ^{2}{\boldsymbol {\omega }}}
Traduction de &#39vorticity source&#39 en Russe